
Container clouds fundamentals

(with Rahti OpenShift OKD)

Tristan Perard, Cloud System Specialist

Joona Tolonen, Cloud System Specialist

Jemal Tahir, Cloud System Specialist

Álvaro González, Cloud System Specialist

1 / 75

Notice

🔴
We will record this presentation

This is to explore the idea of publishing an online video of this course

We will cut out from the recording the Q&A sections (for GDPR and privacy

reasons).

So feel free to ask questions any time

If something makes no sense, you want to make a question or correction, Please

interrupt and make your comment

2 / 75

Expectations

How familiar are you with Containers and Rahti Cloud?

What are you expecting to learn from this course?

https://www.menti.com/alt4w9vdjifn

3 / 75

https://www.menti.com/alt4w9vdjifn

Schedule

When What

9:00 - 10:30 Lecture What is Rahti? Introduction to containers

Application templates

Web interface Howtos

10:30 - 10:45 Coffee break ☕
10:45 - 12:00 Exercises A

12:00 - 13:00 Lunch break 🍽
13:00 - 14:30 Lecture Storage

High level Kubernetes architecture

Command line tool

Command line interface Howtos

14:30 - 14:45 Coffee break ☕
14:45 - 15:00 Exercises B and C

15:00 - 15:15 Closing Documentation and contact info

15:15 - 16:00 Exercises Extra time

4 / 75

What is Rahti?

PaaS cloud

5 / 75

Rahti PaaS cloud

Rahti (https://rahti.csc.fi) is a platform as a service (PaaS) container

cloud orchestration service.

📜 "The infrastructure (network, hardware, Operating System, ...) is

offered as a platform to you, the user, so you can just worry about

running the Software and nothing else".

No worries about: Hardware issues, Operation systems patches, etc.

Security: Containers allow software from independent teams of people

to run isolated, even though they run in the same hardware.

QoS: Orchestration services provide assured resources

Based in OpenShift OKD (by RedHat)

Extends the functionality of Kubernetes.

Application

Data

Operating System

Hardware

Network Platform

Rahti
OpenShift

Container

6 / 75

https://rahti.csc.fi/
https://www.okd.io/
https://kubernetes.io/

Rahti advantages

Out of the box:

health monitoring, resource consumption, and liveness and

readiness probes.

scaling, resources can be configured to scale up or down

responding to load. (faster than VMs)

failover, in case of any failure, like hardware failure, the software

will be restarted.

rolling updates, a new version of an application will be deployed

with no downtime.

load balancing, automatically distributes load among resources.

DNS, no need to make any support request or wait*.

certificates, always valid, automatically renewed*.

Rahti

*For a given pattern of URLs. something.rahtiapp.fi

7 / 75

More Rahti advantages

Simple code deploying:

Source code. Rahti provides tools to build and deploy code

automatically. Source2Image (S2I).

Internal Rahti template catalog and Helm charts.

Support in the web interface:

Launch applications

Tune application parameters

Request storage

Debug and monitor applications

Check logs

Also powerful CLI and library interfaces.

Rahti

8 / 75

Interacting with Rahti control plane

Web console
Command line

oc create -f pod.yaml
oc replace --force pod.yaml
oc apply -f *.yaml
oc patch ...
oc expose ...

Using client library

from kubernetes import config

c = config.new_client_from_config()
etc...

Official: Go, Python, Java, dotnet, JavaScript

Community maintained: Clojure, Go, Java, Lisp, Node.js,

Perl, PHP, Python, Ruby, Rust, Scala, dotNet, Elixir,

Haskell

9 / 75

Web console:

Service catalog Developer console Administrator console

The default opening viewport

Create projects

Launch applications from templates

Deploy from images

10 / 75

Web console:

Service catalog Developer console Administrator console

Create some API objects

Deploy images

Claim storage

View and modify workloads and API objects

Monitoring

11 / 75

Web console:

Service catalog Developer console Administrator console

Administrator tasks

12 / 75

Introduction to containers

13 / 75

Containers (Software vs real life)

Before

Different installation methods: compile from source,

installation wizard, rpm/deb package, etc

Libraries dependency problems: untested, hard to find,

outdated, etc

No security isolation

No assured resources

After

Standard image registry, fast and standard deployment.

Uniform resource identifier

name:version

Included library dependencies in the container

Isolated from the rest of the system

Assured resources

14 / 75

Containers

All containers running in the same hardware are run by a

single operating system kernel and therefore use fewer

resources than virtual machines.

VMVM Container Container

Hypervisor

Kernel OS

App

Kernel OS

Kernel OS Kernel OS App

AppApp

Containers are stateless.

Any change to a file, done inside a container image

will be lost.

Necessary to use external volumes to save data or

configuration

Container images are stored in "container registries"

Docker hub is the default registry.

https://hub.docker.com

Rahti provides a private registry per project.

http://image-

registry.apps.2.rahti.csc.fi/$PROJECT/$IMAGE

15 / 75

https://hub.docker.com/
http://image-registry.apps.2.rahti.csc.fi/$PROJECT/$IMAGE

Container Runtimes

Container runtimes are a set of PaaS products that use OS-level virtualization to deliver software in packages called

containers[2], in a user friendly manner.

There are few OCI [3] compatible container runtimes, Docker

is currently the most famous, but others also exist:

CRI-O, "Lightweight Container Runtime for Kubernetes".

Podman, daemonless container engine that can be run in

rootless mode.

Singularity is a non OCI container runtime, mainly used in the

HPC world. It is out of scope for this copurse.

[2]: https://en.wikipedia.org/wiki/OS-level_virtualization, [3]: OCI Containers

16 / 75

https://cri-o.io/
https://podman.io/
https://en.wikipedia.org/wiki/Singularity_%28software%29
https://en.wikipedia.org/wiki/OS-level_virtualization
https://opencontainers.org/

Container Runtimes II

With a container runtime you usually can:

Docker Podman

Run sudo docker run <image> podman run <image>

Build sudo docker build . --tag <image> podman build . --tag <image>

Pull (from registry) sudo docker pull <image> podman pull <image>

Push (to registry) sudo docker push <image> podman push <image>

History sudo docker history <image> podman history <image>

They use Linux Kernel features like cgroups and namespaces.

More info on how to run containers in Linux

17 / 75

https://cloud-solutions.a3s.fi/how-to-run-containers-in-Linux/index.html

Demo I

Docker (cinema)

1. Run few command before

2. Run the container alpine

3. Repeat the commands inside the

container

4. Install python's package:

python # Not found
apk add python
python

5. Exit the container the container,

and run it again, python is no

longer there.

* player
00:00

18 / 75

http://localhost:8380/asciicinema.html

Application Charts

19 / 75

Charts

Ready to go applications

or components of applications (ex: Databases).

Easy to deploy from the graphical interface:

Languages (S2I): Java, Ruby, Python...

Databases: MongoDB, MySQL, MariaDB,

PostgreSQL...

Others: Jenkins

20 / 75

Catalog

21 / 75

Source to image Python I

22 / 75

Source to image Python II

23 / 75

Source to image Python III

Rahti will automatically:

Fetch the code

Analyze it

Build a new image

Deploy it

Make it available to the Internet

24 / 75

Demo II

Flask hello-world in Rahti

Using the web interface deploy:

https://github.com/cscfi/rahti-flask-hello

Use the project flask-demo

Rahti automatically builds a container image given application sources.

then the system orchestrates all the components so the application becomes

available

25 / 75

https://rahti.csc.fi:8443/console/project/flask-demo/overview
http://course-flask-demo.rahtiapp.fi/

Web interface Howtos

short howtos for the exercises

26 / 75

Logging in on web console

Navigate to https://rahti.csc.fi.

Click in "Login page"

Select CSC or Haka. Use your own account.

27 / 75

https://rahti.csc.fi/

Creating a project

Click in "Create Project"

Name: Short name that will be used to reference the project

Display Name: Descriptive name that should make clear what the project is

Description: It must be: "csc_project: ?????????". It must be associated to a CSC project for billing purposes.

Initial quota of 5 projects per user

28 / 75

Creating API objects (WEB)

29 / 75

How to see application information?

In the "Developer console", click in "Project", scroll down until

"Inventory" and click in "Pods".

Click in any Pod that you want to see more information about

You can see:

General Details of the Pod.

Read Metrics like CPU, Memory, Filesystem usage and Network.

The YAML representation can be seen and edited.

The Environment variables configured and theirs values.

The Logs can be seen in real time.

Events like image pull errors.

30 / 75

How to open a terminal session

In the "Developer console", click in "Project", scroll

down until "Inventory" and click in "Pods".

It is only available for Running Pods.

It allows an interactive session.

31 / 75

Launching a build

Go to the BuildConfigs page

By clicking in the 3 dots icon of the build you want to start, a drop down menu will appear.

Click in "Start build"

32 / 75

Coffee break

🥐 ☕
15 min

33 / 75

Exercises A

Go to the exercises page.

1. Authorizing client session and creating a project

2. Create python application in Rahti

3. Explore python application

4. Modify python application

Note: It is possible to do these exercises using only the web interface

34 / 75

http://localhost:8380/exercises/index.html

Lunch break

🍲 🍜
60 minutes

35 / 75

Storage

36 / 75

Storage

Containers are ephemeral, this means any change done to a

container image will be lost upon restart. Due to the nature

of container orchestration, container restarts are part of the

life cycle of a cloud application. When a new version is

deployed, a configuration change, or of course uncheduled

failures.

For these reasons we need to have storage solutions, Rahti

provides several.

37 / 75

Storage types

Object
Storage

Persistent
Volumes

Temporary

Configration Secrets

1. Persistent Volumes:

Traditional filesystem approach.

When the application expects a traditional

filesystem.

2. Temporary storage:

Traditional filesystem approach.

When read and write speeds are the most important.

3. Object storage, Allas. S3/Swift:

HTTP interface

Highly scalable

Useful for large volumes of data

4. Configuration: ConfigMaps (and Secrets):

Specific API object to store configuration

38 / 75

Persistent Volumes

Filesystem
rwxrwxrwx Feb 19 2020 /bin
rwxrwxrwx Feb 19 2020 /boot
rwxrwxrwx Feb 14 2020 /etc
rwxrwxrwx Feb 21 2020 /home
rwxrwxrwx Feb 19 2020 /mnt
rwxrwxrwx Feb 12 2020 /usr
rwxrwxrwx Feb 12 2020 /var

Traditional filesystem approach:

Folder mounted in file hierarchy

Technology used is Cinder.

39 / 75

Allas, Object storage

Object storage is a computer data storage architecture that manages data as objects.

Different from Persistent Volumes:

Data within a bucket, not as a file hierarchy.

It can be read and write only as a whole.

Accessed via APIs/HTTP at application-level, rather than

via OS at system level.

Scalable and Self healing storage, thanks to replicas.

Object ID: 123456
Patient Name: Shubham

Patient ID: 23242
Physician Name: Dr. John

Prior1 : XYZ.DICOM
Self Destruct: 2 Year

Custom Metadata

File Name:
CTSCAN_Kapoor

Created by: User1
Created on: 19-09-2017

File Type: DICOM

FILE

System Metadata

Object Storage

40 / 75

Configuration (and secrets)

Stored as internal API objects.

Configuration files:

Can be edited directly in the Web interface,

or as YAML or JSON objects.

Could be mounted as files:

Filesystem Size Used Available Use% Mounted on
/dev/device 3.9T 177.4M 3.9T 0% /etc/config

or as environment variables.

USER=admin
PASSWORD=7h15_15_n07_4_p422W0rD

Secrets have an extra layer of security.

41 / 75

Temporary storage

Traditional filesystem approach, emptyDir:

Folder mounted in file hierarchy.

Local temporary storage:

It is the fastest volume type available.

Data is deleted when the application is

restarted.

ContainerContainer

Volumes

Pod

rwxrwxrwx Feb 19 2020 /bin
rwxrwxrwx Feb 19 2020 /boot
rwxrwxrwx Feb 14 2020 /etc
rwxrwxrwx Feb 21 2020 /home
rwxrwxrwx Feb 19 2020 /mnt
rwxrwxrwx Feb 12 2020 /usr
rwxrwxrwx Feb 12 2020 /var

volume-a

rwxrwxrwx Feb 19 2020 /bin
rwxrwxrwx Feb 19 2020 /boot
rwxrwxrwx Feb 14 2020 /etc
rwxrwxrwx Feb 21 2020 /home
rwxrwxrwx Feb 19 2020 /output
rwxrwxrwx Feb 12 2020 /usr
rwxrwxrwx Feb 12 2020 /var

42 / 75

Demo III

Add storage to previous demo

Using the web interface

Use the same project used in Demo II, flask-demo

Add a cinder volume and mount it to /static/.

Add this kitten photo

43 / 75

https://rahti.csc.fi:8443/console/project/flask-demo/overview
https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Kitten_in_Rizal_Park%2C_Manila.jpg/1200px-Kitten_in_Rizal_Park%2C_Manila.jpg

High level Kubernetes

architecture

44 / 75

API Objects

📜 In Kubernetes everything is an API object

Complex set of API objects:

Network

Container, management

and creation

Job scheduling

Runtime of containers

Storage

Route

Service

Pod
Volume (PVC)

Config map
Secret

ImageStream

Job

CronJobReplicationControler

DeploymentConfig

Empty dir

Docker registry

ST
O

RA
G

E

Internet
BuildConfig

CO
N

TA
IN

ER
S

N
ET

W
O

RK

JO
B

SC
H

ED
U

LE
R

RU
N

TI
M

E

45 / 75

Project

A project sandboxes API objects (Pods and others) in a common namespace.

Local isolated network

For security reasons, projects can not access other

projects by default.

Similar to Namespace

(with extra features)

A project has:

Name: Should be short and descriptive

Display Name: Should be understandable

Description: Must be csc_project: 9999999

where 9999999 is the project number

46 / 75

Pod

A pod is a collection of containers sharing a network

and Inter-process communication namespace

Containers live in one pod

There is no container object in Kubernetes

Nearly always one container per pod

my-pod.yaml
kind: Pod
apiVersion: v1
metadata:
 name: my-pod
spec:
 containers:
 - name: container-1
 image: image-1
 - name: container-2
 image: image-2

Pod

container-1

container-2

Communicate via

localhost (network)

memory (Inter-process communication)

47 / 75

Service

An API object that provides pods a load balanced stable network identity.

The IP of a Pod may change, the IP of a Service will

not change.

Under one Service, there may be several pods.

Tips:

Several ports can be exposed in the same service.

The one exposed port to the incoming traffic, may

be different than the port in the container. Pod
10.0.0.5

Pod
10.0.0.56

Pod
10.0.0.1

Service
172.30.1.1

48 / 75

Route

An API object that exposes a Service to the internet via

HTTP/HTTPS.

Every host with the pattern *.rahtiapp.fi will point

automatically to Rahti:

my-hello-openshift.rahtiapp.fi is an alias for

rahtiapp.fi.

If the host must be different to this pattern, a DNS

CNAME entry must be configured by the user to point

to rahtiapp.fi.

Every host with the pattern *.rahtiapp.fi will have

automatically a valid TLS certificate.

Pod
10.0.0.5

Pod
10.0.0.56

Pod
10.0.0.1

Service
172.30.1.1

*.rahtiapp.fi

Internet

49 / 75

Command line tool oc

50 / 75

The oc command

oc is the OpenShift command line client*.

Some common commands:

LOGIN, oc login. Could take a TOKEN or a username/password.

PROJECT MANAGEMENT, oc projects and oc new-project. List, switch, and create projects.

INFORMATION, oc get and oc describe. Describe is more detailed and more human friendly, and get is more

machine friendly (JSON and YAML outputs).

CREATE, oc create.

MODIFY, oc edit and oc replace. Edit is interactive.

DELETE, oc delete.

*kubectl is equivalent for Kubernetes. oc features are a superset of kubectl.

51 / 75

Installation

The oc tool is a single binary that only needs to be included in your path. Installation:

1. Go to the release page https://github.com/openshift/origin/releases/latest.

2. In the bottom you will see the list of clients. Download the "OpenShift origin

client" corresponding to your OS (Windows, Mac or Linux).

3. Once downloaded, extract the oc binary file.

4. Copy the file to a folder in your $PATH and make it executable. You can see

what is your $PATH by:

(Linux/MacOS) Open a terminal and run:

$ echo $PATH

(Windows) Open the Command Prompt and run:

C:\> path

52 / 75

https://github.com/openshift/origin/releases/latest

YAML and JSON

Data serialization formats used to represent API objects.

"YAML Ain't Markup Language" (YAML).

"JavaScript Object Notation" (JSON).

hello-pod.yaml
kind: Pod
apiVersion: v1
metadata:
 name: hello-pod
 namespace: my-unique-project-name
spec:
 containers:
 - name: hello-container
 image: hello-world

{
"kind": "Pod",
"apiVersion": "v1",
"metadata": {

"name": "hello-pod",
"namespace": "my-unique-project-name"

 },
"spec": {

"containers": [
 {

"name": "hello-container",
"image": "hello-world"

 }
]
 }
}

53 / 75

Command line interface Howtos

54 / 75

Logging in on command line interface

Following https://rahti.csc.fi/usage/cli/

Click in the upper right corner on any Rahti page to reveal the menu option "Copy Login Command":

It will copy the login command to the clipboard.

Paste the command in any Terminal:

Places the token in $HOME/.kube/config.

It will be available in every terminal for the duration of the session.

Note: Do not share the TOKEN, this will be the same as sharing a password.

55 / 75

https://rahti.csc.fi/usage/cli/

Creating a project

Same information as in the web interface:

Name: Short name that will be used to reference the project

Display Name: Descriptive name that should make clear what the

project is

Description: It must be: "csc_project: XXXXXXX". It must be

associated to a CSC project for billing purposes.

oc new-project nptest \
 --display-name='New project Test' \
 --description='csc_project: 2001316'

The output should be something like:

Now using project "nptest" on server "https://rahti.csc.fi:8443".

You can add applications to this project with the 'new-app' command. For example, try:

 oc new-app centos/ruby-25-centos7~https://github.com/sclorg/ruby-ex.git

to build a new example application in Ruby.

56 / 75

Creating API objects (CLI)

1. Write the API object file. You may use JSON or YAML. It is recommended to

use an existing API object as an initial point.

2. Create the object by calling the file created in the previous step.

oc create -f Pod.yaml

3. Check if it has been created properly

oc get pod/hello-pod -o yaml

Pod.yaml
kind: Pod
apiVersion: v1
metadata:
 name: hello-pod
spec:
 containers:
 - name: hello-container
 image: hello-world
 restartPolicy: OnFailure

57 / 75

How to connect to a running pod?

First, get the name of the Pod to

open the interactive session to:

and choose any Pod with

Running STATUS.

$ oc get pods
NAME READY STATUS RESTARTS AGE
django-ex-1-build 0/1 Completed 0 2h
django-ex-1-svwg2 1/1 Running 0 2h

$ oc rsh pod/django-ex-1-svwg2
(app-root) sh-4.2$

58 / 75

How to see application logs?

Similar first step as previously, get

the name of the Pod to get logs from:

and choose any Pod.

$ oc get pods
NAME READY STATUS RESTARTS AGE
django-ex-1-build 0/1 Completed 0 2h
django-ex-1-svwg2 1/1 Running 0 2h

$ oc logs pod/django-ex-1-svwg2
---> Migrating database ...
Operations to perform:
 Apply all migrations: admin, auth, contenttypes, sessions, welcome
Running migrations:
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK
 Applying contenttypes.0002_remove_content_type_name... OK
 Applying auth.0002_alter_permission_name_max_length... OK
 Applying auth.0003_alter_user_email_max_length... OK
 Applying auth.0004_alter_user_username_opts... OK
 Applying auth.0005_alter_user_last_login_null... OK
 Applying auth.0006_require_contenttypes_0002... OK
 Applying auth.0007_alter_validators_add_error_messages... OK

59 / 75

Edit API objects

It is possible to do this in a single command:

oc edit pod/hello-pod

It is also possible to get the API object into a file, edit the file with any editor, and replace the object:

1. Get the current object

oc get pod/hello-pod -o yaml >hello-pod.yaml

-o json is also a possibility instead of -o yaml

2. Edit the YAML file.

3. Replace the object

oc replace --force -f hello-pod.yaml

60 / 75

Run a container image interactively

It is sometimes useful to be able to run a random container image for debugging inside a project.

This will run bash inside a new pod called centos-test, attach stdin to terminal (--it), remove it when exiting (--rm

and --restart=Never), and use centos:7 as container image.

$ oc run centos-test --rm -it --image=centos:7 --restart=Never -- /bin/bash
If you do not see a command prompt, try pressing enter.
bash-4.2$

Note: This is only possible to do using the command line

61 / 75

Source2Image: CLI

Create a new application automatically from source code. For example:

 oc new-app https://github.com/openshift/django-ex.git

This will clone the GIT repository, analyze it, create a image with the code, and launch it. The only remaining step to make

the application accessible to the whole Internet is to:

 oc expose svc/django-ex

62 / 75

Demo IV

hello-world in Rahti

Using the command line

oc create -f hello-pod.yaml

hello-pod.yaml
kind: Pod
apiVersion: v1
metadata:
 name: hello-pod
 labels:
 app: hello-pod
spec:
 containers:
 - name: hello-container
 image: openshift/hello-openshift
 restartPolicy: Never

oc create -f hello-service.yaml

hello-service.yaml
kind: Service
apiVersion: v1
metadata:
 name: hello-service
spec:
 ports:
 - name: 8888-8888
 port: 8888
 protocol: TCP
 targetPort: 8888
 selector:
 app: hello-pod
 type: LoadBalancer
status: {}

oc create -f hello-route.yaml

hello-route.yaml
kind: Route
apiVersion: route.openshift.io/v1
metadata:
 labels:
 app: hello-pod
 name: hello-route
spec:
 port:
 targetPort: 8888-8888
 to:
 kind: Service
 name: hello-service
 weight: 100
 wildcardPolicy: None
status: {}

63 / 75

Etherpad, A collaborative notepad application

This architecture uses everything we talked today

about.

MongoDB as database

Persistence via Persistent Volumes

Configuration of Etherpad with ConfigMap

Database configuration via Secret object

Same Secret to configure the frontend

(etherpad) and database

Etherpad template

etherpad.rahtiapp.fi

Etherpad MongoDB

Route

Service Service

Etherpad

Pod

MongoDB

Configmap

Secret

Internet

Pod

- Username

- Password

- DB name

Persistent Volume

64 / 75

https://github.com/coderefinery/rahti-neic2019-workshop/tree/master/examples/etherpad

Coffee break II

🍩 🍵
15 min

65 / 75

Exercises B

Go to the exercises page.

1. Add persistent storage python application

2. Add configuration python application

3. Execute a container in a pod

4. Create Service and Route

66 / 75

http://localhost:8380/exercises/index.html

Advanced topics and exercises

67 / 75

EmptyDir

Temporary storage, how to set it up?

Edit the API object, Pod or Deployment:

Under spec > volumes, add a new entry of type emptyDir.

Under spec > containers > volumeMounts, add an entry mounting

the previously created volume into a path.

The first change tells Rahti to reserve a space in the node, the second says where

to mount it in the container.

apiVersion: v1
kind: DeploymentConfig
metadata:
 name: test-pd
spec:
 containers:
 - image: k8s.gcr.io/test-webserver
 name: test-container

volumeMounts:
- mountPath: /cache

name: cache-volume
volumes:
- name: cache-volume

emptyDir: {}

68 / 75

Webhooks

📜 A user-defined callback over HTTP. A mechanism in

which an application (ex. GitHub) uses HTTP to notify

another independent application (ex. Rahti).

Go to the builds page

Select the build you want to notify

Scroll down until Webhook URL.

Click in 📋 Copy URL with Secret

Paste it in the repository's Webhook section.
Developer

GitHub

Openshift

Git
pull/push

Web Hook Registry

Pod
website

Build system

69 / 75

Resource Limits

In the Deployment page. Actions > Edit Resource Limits

Makes sure that the application will have, at a minimum, the

requested CPU and memory.

CPU, prevents the application to use more than the limit

Memory, kills the application if it uses more than the

limit

70 / 75

Health Checks (Probes)

Health checks are highly recommended for all production

loads. In the Deployment page. Actions > Edit Health

Checks

Kinds:

Readiness, has the application started yet?

Liveness, is the application alive?

Types:

HTTP GET

Container Command

TCP socket

Initial Delay

Timeout

71 / 75

Exercises C (Extra)

Go to the exercises page.

1. Temporary storage

2. Webhook to trigger rebuild

3. Out of memory killer OOM

4. Probes

Note: You may as well repeat any exercise (from A or B), but using only the command line now.

72 / 75

http://localhost:8380/exercises/index.html

Documentation Links

The Rahti main page: rahti.csc.fi

These slides: https://rahti-course.a3s.fi/basic.html

These slides in PDF: https://rahti-course.a3s.fi/rahti-course-slides.pdf

e-Lena Cloud computing fundamentals course

Enrolment key: cloudcomputing.

Rahti documentation: docs.csc.fi

Command line tools

External documentation

Kubernetes documentation: kubernetes.io/docs/home

OpenShift documentation: docs.okd.io

Accounts:

Create CSC account

Rahti access

73 / 75

https://rahti.csc.fi/
https://rahti-course.a3s.fi/basic.html
https://rahti-course.a3s.fi/rahti-course-slides.pdf
https://e-learn.csc.fi/course/view.php?id=102
https://docs.csc.fi/cloud/rahti/
https://github.com/openshift/origin/releases/tag/v3.11.0
https://kubernetes.io/docs/home/
https://docs.okd.io/
https://docs.csc.fi/accounts/how-to-create-new-user-account/
https://docs.csc.fi/cloud/rahti/access/

Contact Us

If you have any problem, request, or you just need more information:

servicedesk@csc.fi

74 / 75

mailto:servicedesk@csc.fi

Cloud solutions team:

Alvaro Gonzalez, Alvaro.Gonzalez@csc.fi

Tristan Perard, Tristan.Perard@csc.fi

Jemal Tahir, Jemal.Tahir@csc.fi

Joona Tolonen, Joona.Tolonen@csc.fi

https://facebook.com/CSCfi

https://twitter.com/CSCfi

https://www.youtube.com/c/CSCfi

https://www.linkedin.com/company/csc--it-center-for-science

75 / 75

mailto:Alvaro.Gonzalez@csc.fi
mailto:Tristan.Perard@csc.fi
mailto:Jemal.Tahir@csc.fi
mailto:Joona.Tolonen@csc.fi
https://facebook.com/CSCfi
https://twitter.com/CSCfi
https://www.youtube.com/c/CSCfi
https://www.linkedin.com/company/csc--it-center-for-science

